TRẮC NGHIỆM MẶT CẦU – KHỐI CẦU
Câu 1. Cho đường tròn C đường kính AB và đường thẳng Δ. Để hình tròn xoay sinh bởi C khi quay quanh Δ là một mặt cầu thì cần có thêm điều kiện nào sau đây
(I)Đường kính AB thuộc Δ.
(II)Δ cố định và đường kính AB thuộc Δ.
(III)Δ cố định và hai điểm A,B cố định trênΔ.
A. Chỉ (I). B. Chỉ (II).
C. Chỉ (III). D. Không cần thêm điều kiện nào.
Câu 2. Cho mặt cầu S tâm O, bán kính R và mặt phẳng P có khoảng cách đến O bằng R. Một điểm M tùy ý thuộc S. Đường thẳng OM cắt P tại N. Hình chiếu của O trên P là I. Mệnh đề nào sau đây đúng?

A. NI tiếp xúc với S.
B. ON=R2⇔IN=R.
C. Cả A và B đều sai.
D. Cả A và B đều đúng.
Câu 3. Cho mặt cầu SO;R và một điểm A, biết OA=2R. Qua A kẻ một tiếp tuyến tiếp xúc với S tại B. Khi đó độ dài đoạn AB bằng
A. R. B. R2. C. R2. D. R3.
Câu 4. Cho mặt cầu SO;R và một điểm A, biết OA=2R. Qua A kẻ một cát tuyến cắt S tại B và C sao cho BC=R3. Khi đó khoảng cách từ O đến BC bằng
A. R. B. R2. C. R2. D. R3.
Câu 5. Cho mặt cầu SO;R và mặt phẳng α. Biết khoảng cách từ O đến α bằng R2. Khi đó thiết diện tạo bởi mặt phẳng α với SO;R là một đường tròn có đường kính bằng

A. R. B. R3.
C. R2. D. R32.
Câu 6. Cho mặt cầu tâm I bán kính R=2,6cm. Một mặt phẳng cắt mặt cầu và cách tâm I một khoảng bằng 2,4cm. Thế thì bán kính của đường tròn do mặt phẳng cắt mặt cầu tạo nên là
A.1,2cm. B. 1,3cm. C. 1cm. D. 1,4cm.
Câu 7. Diện tích hình tròn lớn của một hình cầu là p. Một mặt phẳng α cắt hình cầu theo một hình tròn có diện tích là p2. Khoảng cách từ tâm mặt cầu đến mặt phẳng α bằng
A.pπ. B. 1π. C. 2pπ. D. p2π.
Câu 8. Một hình cầu có bán kính là 2m, một mặt phẳng cắt hình cầu theo một hình tròn có độ dài là 2,4πm. Khoảng cách từ tâm mặt cầu đến mặt phẳng là
A.1,6m. B. 1,5m. C. 1,4m. D. 1,7m.
Câu 9. Cho mặt cầu SO;R, A là một điểm ở trên mặt cầu S và P là mặt phẳng qua A sao cho góc giữa OA và P bằng 600.
Diện tích của đường tròn giao tuyến bằng

A. πR2. B. πR22.
C. πR24. D. πR28.
Câu 10. Cho hình chóp tứ giác đều S.ABCD có cạnh bên bằng cạnh đáy bằng a. Khi đó mặt cầu nội tiếp hình chóp S.ABCD có bán kính bằng
A. a1+32. B. a6-24. C. a6+24. D. a3-12.
Câu 11. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B và BA=BC=a. Cạnh bên SA=2a và vuông góc với mặt phẳng đáy. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là
A. a22. B. 3a. C. a62. D. a6.
Câu 12. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Cạnh bên SA=a6 và vuông góc với đáy ABCD. Tính theo a diện tích mặt cầu ngoại tiếp hình chóp S.ABCD ta được
A. a22. B. 8πa2. C. 2a2. D. 2πa2.
Câu 13. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, AB=a. Cạnh bên SA=a2, hình chiếu của điểm S lên mặt phẳng đáy trùng với trung điểm của cạnh huyền AC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là
A. a22. B. a63. C. a62. D. a23.
Câu 14. Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng a và cạnh bên bằng a216. Gọi h là chiều cao của khối chóp và R là bán kính mặt cầu ngoại tiếp khối chóp. Tỉ số Rh bằng
A. 712 B. 724. C. 76. D. 12.
Câu 15. Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a, cạnh bên hợp với mặt đáy một góc 600. Thể tích của khối cầu ngoại tiếp khối chóp S.ABCD là
A. 4πa33. B. 2πa369. C. 8πa369. D. 8πa3627.
Câu 16. Cho hình chóp S.ABCD có đáy ABCD là hình thang cân, đáy lớn AD=2a, AB=BC=CD=a. Cạnh bên SA=2a và vuông góc với đáy. Gọi R là bán kính mặt cầu ngoại tiếp khối chóp S.ABCD. Tỉ số Ra nhận giá trị nào sau đây?
A. a2. B. a. C. 1 D. 2.
Câu 17. Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB=2a, AD=a. Cạnh bên SA vuông góc với đáy và góc giữa SC với đáy bằng 450. Gọi N là trung điểm SA, h là chiều cao của khối chóp S.ABCD và R là bán kính mặt cầu ngoại tiếp khối chóp N.ABC. Biểu thức liên hệ giữa R và h là
A. 4R=5h. B. 5R=4h. C. R=455h. D. R=554h.
Câu 18. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh bằng a. Đường thẳng SA=a2 vuông góc với đáy ABCD. Gọi M là trung điểm SC, mặt phẳng α đi qua hai điểm A và M đồng thời song song với BD cắt SB, SD lần lượt tại E,F. Bán kính mặt cầu đi qua năm điểm S,A,E,M,F nhận giá trị nào sau đây?
A. a2. B. a. C. a22. D. a2.
Câu 19. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Đường thẳng SA vuông góc đáy ABCD. Gọi H là hình chiếu của A trên đường thẳng SB. Bán kính mặt cầu ngoại tiếp tứ diện HBCD có giá trị nào sau đây?
A. a2. B. a. C. a22. D. a2.
Câu 20. Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B và BC=a. Cạnh bên SA vuông góc với đáy ABC. Gọi H,K lần lượt là hình chiếu vuông góc của A lên cạnh bên SB và SC. Thể tích của khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKCB là
A. 2πa33. B. 2πa3. C. πa36. D. πa32.
Câu 21. Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, BD=a. Hình chiếu vuông góc H của đỉnh S trên mặt phẳng đáy ABCD là trung điểm OD. Đường thẳng SD tạo với mặt đáy một góc bằng 600. Bán kính mặt cầu ngoại tiếp hình chóp S.ABCD nhận giá trị nào sau đây?
A. a4. B. a3. C. a2. D. a.
Câu 22. Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên mặt phẳng ABC là trung điểm H của cạnh BC. Góc giữa đường thẳng SA và mặt phẳng ABC bằng 600. Gọi G là trọng tâm tam giác SAC, R là bán kính mặt cầu có tâm G và tiếp xúc với mặt phẳng SAB. Đẳng thức nào sau đây sai?
A. R=dG,SAB. B. 313R=2SH.
C. R2SΔABC=4339. D. Ra=13.
Câu 23. Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Mặt bên SAB là tam giác vuông tại S và nằm trong mặt phẳng vuông góc với đáy. Thể tích khối cầu ngoại tiếp hình chóp S.ABCD là
A. 2πa33. B. 1111πa3162. C. πa36. D. πa33.
Câu 24. Cho hình chóp S.ABC có đáy ABC là một tam giác đều cạnh bằng a. Cạnh bên SA=a3 và vuông góc với đáy ABC. Bán kính mặt cầu ngoại tiếp khối chóp S.ABC là
A. a2. B. a132. C. a396. D. a154.
Câu 25. Cho tứ diện OABC có các cạnh OA,OB,OC đôi một vuông góc và OA=a, OB=2a, OC=3a. Bán kính mặt cầu ngoại tiếp tứ diện O.ABC là
A. a3 B. 3a2. C. a62. D. a142.
Câu 26. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại A, AB=AC=a. Cạnh bên SA vuông góc với đáy ABC. Gọi I là trung điểm của BC, SI tạo với đáy ABC một góc 600. Gọi S,V lần lượt là diện tích mặt cầu và thể tích khối cầu ngoại tiếp hình chóp S.ABC. Tỉ số VS bằng ?
A. a14 B. a1412. C. 3a144. D. a26.
Câu 27. Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, góc BAD^=1200. Cạnh bên SA=a3 và vuông góc với đáy ABCD.
Bán kính mặt cầu ngoại tiếp khối chóp S.ACD nhận giá trị
A. a1323. B. 2a3. C. a133. D. a1333.
Câu 28. Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại C và BC=a. Mặt phẳng SAB vuông góc với đáy, SA=SB=a, ASB^=1200. Bán kính mặt cầu ngoại tiếp hình chóp S.ABC là
A. a4. B. a2. C. a. D. 2a.
Câu 29. Cho lăng trụ đứng ABC.A'B'C' có đáy ABC là tam giác vuông tại B, AC=a3, góc ACB^ bằng 300. Góc giữa đường thẳng AB' và mặt phẳng ABC bằng 600. Bán kính mặt cầu ngoại tiếp tứ diện A'ABC bằng
A. 3a4. B. a214. C. a212. D. a218.
Câu 30. Cho lăng trụ đứng ABC.A'B'C' có đáy là tam giác đều cạnh a. Mặt phẳng AB'C' tạo với mặt đáy góc 600 và điểm G là trọng tâm tam giác ABC. Bán kính mặt cầu ngoại tiếp khối chóp G.A'B'C' bằng
A. 85a108. B. 3a2. C. 3a4. D. 31a36.
ĐÁP ÁN VÀ LỜI GIẢI
Câu 1. Chọn C.
Câu 2. Vì I là hình chiếu của O trên P nên dO,P=OI mà dO,P=R nên I là tiếp điểm của P và S.
Đường thẳng OM cắt P tại N nên IN vuông góc với OI tại I. Suy ra IN tiếp xúc với S.
Tam giác OIN vuông tại I nên ON=R2⇔IN=R. Chọn D.
Câu 3. Vì AB tiếp xúc với S tại B nên AB⊥OB.
Suy ra AB=OA2-OB2=4R2-R2=R3. Chọn D.
Câu 4. Gọi H là hình chiếu của O lên BC.
Ta có OB=OC=R, suy ra H là trung điểm của BC nên HC=CD2=R32.
Suy ra OH=OC2-HC2=R2. Chọn B.
Câu 5. Gọi H là hình chiếu của O xuống α.
Ta có dO,α=OH=R2<R nên α cắt SO;R theo đường tròn CH;r.
Bán kính đường tròn CH;r là r=R2-OH2=R32.
Suy ra đường kính bằng R3.Chọn B.
Câu 6. Mặt phẳng cắt mặt cầu SI;2,6cm theo một đường tròn H;r.
Vậy r=R2-IH2=2,62-2,42=1cm. Chọn C.
Câu 7. Hình tròn lớn của hình cầu S là hình tròn tạo bởi mặt phẳng cắt hình cầu và đi qua tâm của hình cầu. Gọi R là bán kính hình cầu thì hình tròn lớn cũng có bán kính là R.
Theo giả thiết, ta có πR2=p⇔R=pπ và πr2=p2⇔r=p2π.
Suy ra d=R2-r2=p2π. Chọn D.
Câu 8. Gọi khoảng cách từ tâm cầu đến mặt phẳng là d, ta có d2=R2-r2.
Theo giả thiết R=2m và 2πr=2,4πm⇒r=2,4π2π=1,2m.
Vậy d=R2-r2=1,6m. Chọn A.
Câu 9. Gọi H là hình chiếu vuông góc của O trên P thì
● H là tâm của đường tròn giao tuyến của P và S.
● OA,P^=OA,AH^=600.
Bán kính của đường tròn giao tuyến r=HA=OA.cos600=R2.
Suy ra diện tích đường tròn giao tuyến πr2=πR22=πR24. Chọn C.
Câu 10.
Gọi H là tâm của hình vuông ABCD.
Ta có SH là trục đường tròn ngoại tiếp đáy.
Gọi M là trung điểm của CD và I là chân đường phân giác trong của góc SMH^(I∈SH).

Suy ra I là tâm của mặt cầu nội tiếp hình chóp, bán kính r=IH.
Ta có SH=SA2-AH2=a22;SM=a32;MH=a2.
Dựa vào tính chất của đường phân giác ta có
ISIH=MSMH
⇒SHIH=MS+MHMH
⇒IH=SH.MHMS+MH=
a2+6=a6-24.Chọn B.
Câu 11. Gọi M là trung điểm AC, suy ra M là tâm đường tròn ngoại tiếp tam giác ABC.
Gọi I là trung điểm SC, suy ra
IM∥SA nên IM⊥ABC.
Do đó IM là trục của ΔABC, suy ra
IA=IB=IC. 1
Hơn nữa, tam giác SAC vuông tại A có I là trung điểm SC nên IS=IC=IA. 2

Từ 1 và 2, ta có IS=IA=IB=IC
hay I là tâm của mặt cầu ngoại tiếp hình chóp S.ABC.
Vậy bán kính R=IS=SC2
=SA2+AC22=a62. Chọn C.
Câu 12. Gọi O=AC∩BD, suy ra O là tâm đường tròn ngoại tiếp hình vuông ABCD.
Gọi I là trung điểm SC, suy ra
IO∥SA⇒IO⊥ABCD.

Do đó IO là trục của hình vuông ABCD, suy ra
IA=IB=IC=ID.1
Tam giác SAC vuông tại A có I là trung điểm cạnh huyền SC nên IS=IC=IA. 2
Từ 1 và 2, ta có R=IA=IB=IC=
ID=IS=SC2=a2
Vậy diện tích mặt cầu S=4πR2=8πa2 (đvdt). Chọn B.
Câu 13. Gọi M là trung điểm AC, suy ra SM⊥ABC⇒SM⊥AC.
Tam giác SAC có SM là đường cao và cũng là trung tuyến nên tam giác SAC cân tại S.
Ta có AC=AB2+BC2=a2, suy ra tam giác SAC đều.

Gọi G là trọng tâm ΔSAC, suy ra GS=GA=GC. 1
Tam giác ABC vuông tại B, có M là trung điểm cạnh huyền AC nên M là tâm đường tròn ngoại tiếp tam giác ABC.
Lại có SM⊥ABC nên SM là trục của tam giác ABC.
Mà G thuộc SM nên suy ra GA=GB=GC. 2
Từ 1 và 2, suy ra
GS=GA=G